












overestimation by d0.1 and pbMutSel was more apparent for
natural simulations.

For the BL¼ 0.01 simulations, all methods performed
poorly, likely because sequences did not attain the evolution-
ary equilibrium reflected by the true parameter values (fig. 3C
and D and supplementary figs. S4, S6, and S7, Supplementary
Material online). Specifically, unpenalized swMutSel, mvn100,
and mvn10 strongly underestimated dN/dS and entropy,
meaning that they inferred far more stringent evolutionary
constraint than existed. Further, d0.01 showed the least esti-
mator bias for natural simulations, and d0.1 showed the least
estimator bias for DMS simulations, likely resulting from the
different selection pressures between simulation sets.
pbMutSel greatly overestimated dN/dS and entropy, often
to the point where virtually no relationship existed between
true and inferred metrics. These results suggest that muta-
tion–selection models might be unreliable for analyzing data
sets with low divergence. Even so, the overall patterns ob-
served for r2, estimator bias, and slope were consistent be-
tween branch length conditions, implying that dN/dS and
entropy, moreso than JSD, served as robust indicators of mu-
tation–selection model performance.

Causes of Site-Specific Inference Error across Methods
We next asked whether a given site’s underlying selective
constraint, as represented by the true site-specific dN/dS,
influenced error in the inferred fitness values, as represented
by site-specific JSD. In other words, we examined whether the
selection pressure at individual sites biased fitness inferences
within a given gene. Given the broad comparability between
dN/dS and entropy metrics (fig. 4), we considered only the
more evolutionarily aware dN/dS. In addition, we studied only
the BL¼ 0.5 simulations.

We regressed site-specific JSD against dN/dS, and we ana-
lyzed the slope of each regression (fig. 5A and B). For natural
simulations, unpenalized swMutSel, mvn100, mvn10, and
d0.01 JSD increased with decreasing selection pressure, i.e.,
increasing dN/dS, as indicated by positive slopes. However,
5 of the 11 natural data sets yielded slopes that did not sig-
nificantly differ from 0 (Bonferroni-corrected P> 0.05) when
run with d0.01, suggesting that this swMutSel parameteriza-
tion may be less biased by selection pressures. By contrast,
d0.1 and pbMutSel displayed the opposite trend from the
other approaches: JSD was lowest for these approaches at
sites with weak selective constraint, i.e., high dN/dS.
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FIG. 4. Performance of mutation–selection model inference platforms on simulations with branch lengths of 0.5. Labeled points correspond to
DMS simulations. (A and B) r2 between true and inferred dN/dS (A) and entropy (B) across inference methods, for all simulated data sets. (C and D)
Estimator bias of inference methods relative to true dN/dS (C) and entropy (D) values, for all simulated data sets. Open points indicate biases that
were not significantly different from 0 (Bonferroni-corrected P> 0.05, test for intercept in linear model), and solid points indicate biases that were
significantly different from 0 (Bonferroni-corrected P< 0.05). The straight line indicates an estimator bias of 0, meaning an unbiased predictor.
Note that panels (C and D) use different y-axis ranges, due to the different scales between dN/dS and entropy. (E and F) Slope for the linear
relationship of inferred regressed on true dN/dS (E) and entropy (F) values. Open points indicate slopes that were not significantly different from 1
(Bonferroni-corrected P> 0.05, test for slope in linear model not equal to 1), and solid points indicate biases that were significantly different from 1
(Bonferroni-corrected P< 0.05). The straight line indicates the null slope of 1. A corresponding figure for simulations using branch lengths of 0.01 is
in supplementary figure S7, Supplementary Material online.
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For DMS simulations, on the other hand, all slopes were
weakly negative (fig. 5A and B), meaning that all inference
approaches yielded more precise fitness estimates for sites
with weaker selection pressure. Moreover, many of the slopes
for DMS simulation comparisons were not statistically different
from 0 (fig. 5B), namely when run with mvn10 and d0.01.
Therefore, fitness estimates made by the d0.01 swMutSel pa-
rameterization were least influenced by underlying site-specific
selection pressure across both natural and DMS data sets.

We hypothesized that the source of discrepancy between
natural and DMS simulations (fig. 5A and B), could be traced
back to the different selective landscapes between data sets.
We therefore again regressed site-specific JSD on true dN/dS,
but using only a subset of each data set so that each gene had
fully comparable distributions of selective constraint. In par-
ticular, for each regression, we included only sites whose true
dN/dS was in the range 0:3 � dN=dS � 0:6. This analysis
indeed showed that nearly all slopes were not significantly
different from zero (Bonferroni-corrected P> 0.05, fig. 5C).
Thus, it appeared that swMutSel had specific difficulty esti-
mating fitnesses at sites with low selective constraint, and
conversely pbMutSel had specific difficulty estimating fit-
nesses at sites with high selective constraint. The platforms
performed comparably, in terms of site-specific error, for sites
subject to moderate purifying selection.

Inferred Selection Coefficient Distributions Depend
on Method, Not on Data set
Previously, it has been an open question whether observed
features of inferred S distributions, namely the presence of

large proportions of deleterious changes, were primarily
caused by the data being analyzed or instead by the statistical
properties of the specific inference approach applied
(Rodrigue 2013). We therefore next asked whether compar-
ing true and inferred S distributions revealed similar patterns
about methodological performance as dN/dS and entropy
comparisons did.

In fact, we found instead that the inference approach, not
the underlying data set, seemed to predict the shape of the
inferred S distribution (fig. 6 and supplementary figs. S8–S10,
Supplementary Material online). For example, across all DMS
simulations, pbMutSel estimated S distributions that were
most similar to the true S distributions, yet for natural sim-
ulations, S distributions estimated by unpenalized swMutSel
most resembled the true distributions. Our analysis of site-
specific selective constraint with dN/dS and entropy, how-
ever, did not find that either of these two approaches inferred
the most reliable selection pressures. Instead, unpenalized
swMutSel tended to underestimate dN/dS entropy, and con-
versely pbMutSel substantially overestimated these quantities
(fig. 4 and supplementary fig. S7, Supplementary Material
online).

Discussion
We have investigated the utility of mutation–selection model
inference platforms for inferring site-specific selective con-
straints from coding sequences. We found that swMutSel,
run specifically with a weak-to-moderate Dirichlet penalty
function, consistently inferred site-specific fitness values
that reliably captured each site’s evolutionary constraint, as
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FIG. 5. The site-specific Jensen–Shannon distance between true and inferred amino-acid frequencies depends both on selective constraint and
inference method. Results are shown for simulations with branch lengths of 0.5. Labeled points correspond to DMS simulations. (A) Site JSD
regressed on true site dN/dS. The line in each panel indicates the linear regression line. (B) Slope of relationship shown in panel (A) for all simulated
data sets. (C) Slope of relationship shown in panel (A) for all simulated data sets, considering only a subset of sites whose true dN/dS falls in the
range dN=dS 2 ½0:3; 0:6�. For panels (B) and (C), the straight line indicates the y¼ 0 line, meaning no linear relationship between JSD and dN/dS.
Open points indicate slopes that were not significantly different from 0 (Bonferroni-corrected P> 0.05), and solid points indicate slopes that were
significantly different from 0 (Bonferroni-corrected P< 0.05).
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represented by dN/dS and entropy. pbMutSel, as well as
swMutSel run with a strong Dirichlet penalty function, sys-
tematically underestimated the strength of natural selection
across sites. In addition, swMutSel multivariate normal pen-
alties estimated fitness values that were nearly identical to
unpenalized swMutSel, suggesting that these penalties may
not substantially reduce overparameterization. Importantly,
our results were robust to the proportion of deleterious
changes in the data: d0.1 swMutSel appeared most suited
for genes with moderate-to-weak purifying selection (i.e.,
unimodal S distributions), and d0.01 swMutSel was the best
performing method for genes subject to strong purifying se-
lection (i.e., S distributions with large proportions of deleteri-
ous changes). We therefore recommend selecting one of
these swMutSel parameterizations for data analysis, depend-
ing on the strength of natural selection suspected to act on
the gene being analyzed.

Rather than focusing our analysis on S distributions, we
instead analyzed mutation–selection inferences on a site-
specific basis using site entropy as well as the evolutionarily

meaningful summary statistic dN/dS. This strategy allowed for
a more fine-grained analysis of inferred parameters compared
with whole-gene S distributions that can obscure site-specific
evolutionary processes. Furthermore, our approach high-
lighted a considerable disconnect between S distributions
and site-specific evolutionary constraint: The mutation–selec-
tion implementation that provided the best S estimates did
not necessarily provide the best estimates of site-specific se-
lection pressure, and vice versa. Instead, inferred S distributions
appeared to be driven primarily by the inference method ap-
plied and not by features of the data set. This discordance
reveals why previous studies focusing almost exclusively on S
as a litmus test to compare performance of swMutSel and
pbMutSel have been unable to reach a consensus.

We additionally emphasize that, while weakly penalized
swMutSel emerged here as the more reliable mutation–selec-
tion inference platform, dN/dS ratios and entropy predicted
from all inferences showed strong relationships with their
corresponding true parameters (figs. 3 and 4), and indeed
with one another. For example, dN/dS and entropy predicted
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FIG. 6. True and inferred distributions of scaled selection coefficients for a subset of simulations, under branch lengths of 0.5. Histograms for
simulations not shown here are in supplementary figures S8–S10, Supplementary Material online. S distributions shown represent the selection
coefficients among all possible single-nucleotide changes, across all sites.
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from unpenalized swMutSel and pbMutSel were, on an aver-
age, correlated with r2 ¼ 0:81 and r2 ¼ 0:56, respectively,
across all BL¼ 0.5 simulations. These high correlations con-
trast with conclusions drawn from previous studies that
swMutSel and pbMutSel make fundamentally distinct, even
incompatible, inferences. Therefore, while performance differ-
ences between swMutSel and pbMutSel were clearly present,
they were smaller than one might assume based on S distri-
butions alone.

Moreover, the larger r2 associated with dN/dS, compared
with entropy, suggests that entropy is a much more sensitive
measurement, specifically in terms of selection pressure. For
example, consider a given amino acid whose stationary fre-
quency is estimated by different platforms as 10�6 and 10�8.
In evolutionary terms, these frequencies amount to virtually
the same result: Natural selection strongly disfavors this
amino acid, which is not likely to fix if it arises by mutation.
dN/dS calculations will recognize the similar consequences of
these frequencies and yield similar values. By contrast, en-
tropy calculations will be much more sensitive to the two-
order of magnitude difference in frequencies. For this reason,
the r2 between unpenalized swMutSel and pbMutSel was
higher for dN/dS than for entropy.

We suggest that some modifications to pbMutSel’s default
settings, such as changing the fixed dispersion parameter for
its Dirichlet prior, may produce more reliable inferences.
Although such efforts may be helpful, there remained salient
differences in runtime between swMutSel and pbMutSel. For
example, each swMutSel inference required between 6 and
72 h to converge (with unpenalized swMutSel inferences on
the longer HA and NP DMS simulations taking the most
time), whereas each pbMutSel inference required between
1 and 3 weeks. In other words, each swMutSel inference con-
verged nearly 10 times more quickly than did each pbMutSel
inference. From a practical standpoint, swMutSel’s relatively
short runtime and reliable inferences make it the preferred
inference platform. We therefore recommend the use of
swMutSel with a weak (d0.01) Dirichlet penalty for highly
constrained genes or with a moderate (d0.1) Dirichlet penalty
for more weakly constrained genes.

Materials and Methods

Generation of Simulated Data
Sequences were simulated according to the mutation–selec-
tion model in Halpern and Bruno (1998), which assumes a
reversible Markov model of sequence evolution. For each site
k, this model’s rate matrix is given by

q
ðkÞ
ij ¼

liju
ðkÞ
ij single nucleotide change

0 multiple nucleotide changes
;

(
(3)

where lij is the site-invariant mutation rate between codons i
and j, and u

ðkÞ
ij , the site-specific relative fixation probability

from codon i to j, is defined as

u
ðkÞ
ij ¼

S
ðkÞ
ij

1� e�S
ðkÞ
ji

; (4)

where S
ðkÞ
ij is the scaled selection coefficient from codon i to j

at site k (Halpern and Bruno 1998). Note that u
ðkÞ
ij can also be

expressed as

u
ðkÞ
ij ¼ ln

pðkÞj lij

pðkÞi lji

 !
= 1�

pðkÞi lji

pðkÞj lij

 !
; (5)

where pðkÞi is the equilibrium frequency of codon i at site k
(Halpern and Bruno 1998; Spielman and Wilke 2015a).

For all simulations, we specified equal mutation rates, lij

¼ l ¼ const: We determined each alignment’s site-specific
codon frequencies from two sources. First, we used a set of
structurally curated natural amino-acid alignments, with each
sequence homologous to a given PDB structure, compiled by
Ramsey et al. (2011). For each of those alignments that con-
tained at least 150 taxa, we calculated each site’s amino acid
frequencies, which we converted to codon frequencies under
the assumption that all synonymous codons for a given
amino acid had the same frequency. In addition, sites which
contained fewer than 150 amino acids (e.g., a column in an
alignment with 200 taxa but half of whose characters are
gaps) were discarded. A total of 11 natural alignments, with
a number of codon positions ranging from 115 to 291, re-
mained after this procedure. We additionally set the equilib-
rium frequency of all unobserved amino acids to 10�9.

Second, we used four sets of experimentally determined
amino acid propensities from deep-mutational scanning
(DMS) experiments. The genes used were influenza H1N1
hemagglutinin (Thyagarajan and Bloom 2014), influenza nu-
cleoprotein (Bloom 2014a; Doud et al. 2015), TEM-1 b-lacta-
mase (Firnberg et al. 2014; Stiffler et al. 2014), and yeast Gal4
(Kitzman et al. 2015). We specifically used scaled experimen-
tal amino-acid propensities, as given by and described in
Bloom (2016). Because we simulated all alignments with sym-
metric nucleotide mutation rates, the amino-acid propensi-
ties obtained from DMS experiments were equivalent to
stationary amino-acid frequencies (Sella and Hirsh 2005;
Bloom 2016), which we used for simulation.

For all derived codon frequency parameters, we computed
codon fitness parameters to calculate selection coefficient
distributions, where Fi ¼ log ðpiÞ for a given codon i (Sella
and Hirsh 2005). This relationship holds specifically in the
presence of symmetric mutation rates. Using the resulting
fitness parameters and equal mutation rates, we then simu-
lated an alignment corresponding to each of the 11 natural
alignments and four DMS profiles using Pyvolve (Spielman
and Wilke 2015b). We conducted all simulations along a 512-
taxon balanced tree with all branch lengths equal to either 0.5
or 0.01, yielding a total of 30 simulated alignments.

Mutation–Selection Model Inference
We processed all alignments, both simulated and empirical,
with swMutSel v1.6 (Tamuri et al. 2014) and pbMutSel, spe-
cifically, PhyloBayes-MPI v1.5a (Rodrigue and Lartillot 2014).
swMutSel inference was carried out under five specifications,
including without the use of a penalty function, and two
parameterizations each for both the multivariate normal
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and the Dirichlet penalty functions. For the multivariate nor-
mal penalty, we set r2 to either 10 or 100, and for the
Dirichlet penalty, we set a to either 0.1 or 0.01.

For inference with pbMutSel, we followed the inference
approach given in Rodrigue (2013). We ran each chain for
5500 iterations, saving every five cycles until a total sample
size of 1100 was obtained. The first 100 samples were dis-
carded as burnin, and hence the final posterior distribution
from which fitnesses were calculated contained 1000 MCMC
draws. Convergence was assessed visually using Tracer
(Rambaut et al. 2014). Note that for inferences on NP and
HA simulations we saved every three, rather than five, cycles
for computational tractability.

We further note that we computed dN/dS and entropy
from the posterior mean of all MCMC cycles for a given
inference. An alternative approach might instead compute
these quantities for each MCMC cycle, and finally, average
these quantities across all draws. However, this procedure is
not currently possible with the PhyloBayes software.

Statistical Analysis and Data Availability
All statistical analyses were conducted in the R programming
language (R Core Team 2015). All statistical tests were per-
formed with a significance value of a ¼ 0:05, with correction
for multiple testing using the Bonferroni correction. Simulated
data, statistical analyses, and all code used are freely available
from the github repository https://github.com/sjspielman/mut
sel_benchmark, last accessed August 16, 2016.

Supplementary Material
Supplementary figures S1–S10 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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