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Abstract

Numerous computational methods exist to assess the mode and strength of natural selection in protein-coding sequences,
yet how distinct methods relate to one another remains largely unknown. Here, we elucidate the relationship between two
widely used phylogenetic modeling frameworks: dN/dS models and mutation-selection (MutSel) models. We derive a
mathematical relationship between dN/dS and scaled selection coefficients, the focal parameters of MutSel models, and
use this relationship to gain deeper insight into the behaviors, limitations, and applicabilities of these two modeling frame-
works. We prove that, if all synonymous changes are neutral, standard MutSel models correspond to dN=dS � 1. However, if
synonymous codons differ in fitness, dN/dS can take on arbitrarily high values even if all selection is purifying. Thus, the
MutSel modeling framework cannot necessarily accommodate positive, diversifying selection, while dN/dS cannot distin-
guish between purifying selection on synonymous codons and positive selection on amino acids. We further propose a new
benchmarking strategy of dN/dS inferences against MutSel simulations and demonstrate that the widely used Goldman–
Yang-styledN/dSmodelsyieldsubstantiallybiaseddN/dSestimatesonrealistic sequencedata. Incontrast, theless frequently
used Muse–Gaut-style models display much less bias. Strikingly, the least-biased and most precise dN/dS estimates are never
found in the models with the best fit to the data, measured through both AIC and BIC scores. Thus, selecting models based on
goodness-of-fit criteria can yield poor parameter estimates if the models considered do not precisely correspond to the
underlying mechanismthat generated the data. In conclusion, establishing mathematical linksamong modeling frameworks
represents a novel, powerful strategy to pinpoint previously unrecognized model limitations and strengths.

Key words: dN/dS, mutation-selection models, scaled selection coefficients, Markov models of sequence evolution, protein
evolution.

Introduction
The oldest and most widely used method to infer selection
pressure in protein-coding genes calculates the evolutionary
rate ratio dN/dS, which represents the ratio of nonsynony-
mous to synonymous substitution rates. This metric indicates
how quickly a protein’s constituent amino acids change, rel-
ative to synonymous changes, and it is commonly used to
identify protein sites that experience purifying selection
(dN=dS < 1), evolve neutrally (dN=dS&1), or experience
positive, diversifying selection (dN=dS 4 1; Nielsen and
Yang 1998; Yang et al. 2000; Kosakovsky Pond and Frost
2005b; Huelsenbeck et al. 2006). In phylogenetic contexts,
dN/dS is typically calculated using a maximum likelihood
(ML) approach (Goldman and Yang 1994; Muse and Gaut
1994; Nielsen and Yang 1998; Yang 2006). ML methods
assume a continuous time Markov model of sequence evo-
lution, and since the introduction of Markov codon models in
the 1990s, they have become a staple of comparative se-
quence analysis (see Anisimova and Kosiol [2009] for a com-
prehensive review). Throughout this article, we will refer to
these models as dN/dS-based models.

A second class of Markov models, known as mutation-
selection (MutSel) models, is increasingly being viewed as
a viable alternative to the dN/dS framework. Although

dN/dS-based models describe how quickly a protein’s constit-
uent amino acids change, MutSel models assess the strength
of natural selection acting on specific mutations. Couched
firmly in population-genetic theory, the MutSel framework
estimates site-specific scaled selection coefficients S ¼ 2Nes,
which indicate the extent to which natural selection favors, or
disfavors, particular codon and/or amino acid changes
(Halpern and Bruno 1998; Yang and Nielsen 2008; Rodrigue
et al. 2010; Tamuri et al. 2012). Although first introduced over
15 years ago (Halpern and Bruno 1998), MutSel models have
seen little use due to their high computational expense.
Recently, however, several computationally tractable model
implementations have emerged (Rodrigue and Lartillot 2014;
Tamuri et al. 2014), allowing for the first time the potential for
widespread adoption.

Over the course of 20 years development, dN/dS-based
models have advanced to a high level of sophistication.
These models can accommodate a variety of evolutionary
scenarios, including synonymous rate variation (Muse and
Gaut 1994; Kosakovsky Pond and Muse 2005; Rubinstein
et al. 2011) and episodic (Kosakovsky Pond et al. 2011;
Murrell et al. 2012) and/or lineage-specific selection (Yang
and Nielsen 2002; Kosakovsky Pond and Frost 2005a; Zhang
et al. 2005), and they can also incorporate information
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regarding protein structure and epistatic interactions
(Rodrigue et al. 2000; Robinson et al. 2003; Thorne et al.
2007; Scherrer et al. 2012; Meyer and Wilke 2013). This flex-
ibility, along with accessible software implementations
(Kosakovsky Pond et al. 2005; Yang 2007; Delport et al.
2010), makes dN/dS-based models an attractive analysis
choice. On the other hand, some have argued that MutSel
models, given their explicit basis in population-genetics
theory and attention to site-specific amino acid fitness differ-
ences, offer a more mechanistically realistic approach to
studying coding-sequence evolution (Halpern and Bruno
1998; Rodrigue et al. 2010; Tamuri et al. 2012; Thorne et al.
2012). Moreover, a growing body of literature has demon-
strated that dN/dS estimates are particularly sensitive to vio-
lations in model assumptions, calling into question the
general utility of dN/dS-based models (Rocha et al. 2006;
Kryazhimskiy and Plotkin 2008; Ratnakumar et al. 2010;
Mugal et al. 2014).

Although both MutSel and dN/dS-based models describe
the same fundamental process of coding-sequence evolution
along a phylogeny, it is unknown how these two modeling
frameworks relate to one another. In particular, as these in-
ference methods have been developed independently, it re-
mains an open question whether or not parameter estimates
from one model are comparable to those of the other model.
As a consequence, although certain rhetorical arguments may
be made in favor of using one method over another, there is
currently no formalized, concrete rationale to guide re-
searchers in their methodological choices. Elucidating the re-
lationship between these complementary modeling
frameworks will more precisely reveal under which circum-
stances the use of these models is justified and has great
potential to reveal previously unrecognized model behaviors,
limitations, and capabilities.

Here, we formalize the relationship between these two
modeling frameworks by examining the extent to which
their respective focal parameters, dN/dS and scaled selection
coefficients, yield overlapping information about the evolu-
tionary process. To this end, we derive a mathematical rela-
tionship between dN/dS and scaled selection coefficients. We
find that dN/dS values can be precisely calculated from scaled
selection coefficients, and that dN/dS accurately captures the
selective pressures indicated by a given distribution of scaled
selection coefficients. Furthermore, we prove that, when syn-
onymous mutations are neutral, it is only possible to recover
dN=dS � 1 from scaled selection coefficients, demonstrating
that MutSel models, which commonly assume a static fitness
landscape, are inherently only able to model purifying selec-
tion. Therefore, these models would be an inappropriate anal-
ysis method if positive selection is expected. However, we also
find that, when synonymous codons have different fitnesses
and hence purifying selection acts on synonymous changes, it
is possible to recover dN/dS values above 1, even though
classical positive, diversifying selection is not occurring.
Therefore, the dN/dS framework cannot distinguish between
positive, diversifying selection on amino acids and purifying
selection on synonymous changes.

Finally, this relationship provides a uniquely rigorous plat-
form to examine the performance of dN/dS-based models.
Typically, researchers evaluate performance of a given infer-
ence framework through simulations that adhere to the un-
derlying model’s assumptions (but see Schoniger and von
Haeseler [1995]; Minin et al. [2003]; Holder et al. [2008];
Yap et al. [2010]; Rubinstein et al. [2011]). In particular, sim-
ulated data is usually generated according to the same model
as the inference framework, allowing for a direct comparison
between the true and estimated parameter values. Although
this strategy is critical for testing whether a model implemen-
tation behaves as expected, it cannot assess model perfor-
mance when the data are generated under a different process
than the one modeled in the inference framework. However,
in real-world sequence analysis, the inference framework will
never exactly match the data-generation process. Therefore, a
more sensitive test of model performance would examine
how a given method performs when data are simulated
under different mechanistic processes, and how sensitive
the method is to violations of its assumptions.
Unfortunately, such an approach is typically infeasible, be-
cause the relationships between parameters of interest
among distinct model classes are generally not known.

The relationship we establish here between dN/dS and
selection coefficients allows us to overcome this limitation,
as we can determine the true dN/dS value directly from
MutSel model parameters. Thus, we can assess performance
of dN/dS-based inference frameworks by simulating data with
a MutSel model and then comparing inferred dN/dS ML es-
timates (MLEs) to dN/dS values computed from selection
coefficients. Using this strategy, we find, for sequences
evolved under a symmetric mutation model, that dN/dS
values inferred in an ML framework agreed precisely with
those calculated from scaled selection coefficients. However,
as mutational asymmetry increases, dN/dS MLEs become in-
creasingly biased away from their true values, under a variety
of ML model parameterizations. Surprisingly, the ML model
parameterization which produced the most accurate dN/dS
estimates was never the model which exhibited the best fit to
the data (measured by AIC and BIC), ultimately revealing that
relying on model fit as a litmus-test for model performance
can be an ineffective and misleading strategy.

Results and Discussion

Theoretical Model

This section contains a rederivation of results presented by
Halpern and Bruno (1998), reproduced here to introduce
notation and to place the remainder of our work into context.
We model sequence evolution using the Halpern–Bruno
MutSel modeling framework under the assumptions of a
fixed effective population size Ne and constant selection pres-
sure over time (Halpern and Bruno 1998; Yang and Nielsen
2008; Tamuri et al. 2012; Thorne et al. 2012). This continuous-
time reversible Markov process is governed by the 61� 61
transition matrix TðtÞ ¼ eQt, where the matrix Q ¼ qij gives
the instantaneous substitution probabilities between all 61
sense codons, and diagonal elements of Q satisfy
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qii ¼ �
X

i6¼j
qij. We assume that only single-nucleotide

substitutions occur instantaneously.
Let f codon

i be the fitness of codon i, and let the selection
coefficient acting on a mutation from codon i to codon j be
sij ¼ f codon

j � f codon
i (Sella and Hirsh 2005; Yang and Nielsen

2008). The fixation probability for this mutation is (Kimura
1962; Halpern and Bruno 1998)

uij&
2sij

1� e�2Nesij
¼

1

Ne

2Nesij

1� e�2Nesij
: ð1Þ

We further define Sij ¼ 2Nesij (although note that this
value would equal 4Nesij in diploids) as the scaled selection
coefficient for this change (Yang and Nielsen 2008). The prob-
ability of a substitution from codon i to j is therefore

qij ¼ Nemijuij ¼ mij
Sij

1� e�Sij
; ð2Þ

where mij is the codon mutation rate, which represents the rate
at which codon i transitions to codon j (Halpern and Bruno
1998; Sella and Hirsh 2005). If we assume that mij only has
nonzero entries for single-nucleotide changes, we can write it
as mij ¼ �oitj

, where �kl is the pernucleotide mutation rate, oi

is the origin (i.e., before mutation) nucleotide in codon i, and tj

is the target (i.e., after mutation) nucleotide in codon j.
We now show how Sij can be written in terms of mutation

rates and stationary (equilibrium) codon frequencies Pi. As
this system satisfies detailed balance (reversibility; Halpern
and Bruno 1998), we have

qijPi ¼ qjiPj: ð3Þ

From equations (2) and (3), we can write the ratio of substi-
tution probabilities as

Pi

Pj
¼

mjiSjið1� e�SijÞ

mijSijð1� e�SjiÞ
: ð4Þ

Using Sij ¼ �Sji, we find that

Sij ¼ ln
Pjmji

Pimij

� �
: ð5Þ

This equation, previously derived in Halpern and Bruno
(1998), establishes a relationship between scaled selection
coefficients and the stationary codon frequencies of the
Markov chain. Moreover, in the specific case of symmetric
mutation rates mij = mji, we have Sij ¼ ln ðPj=PiÞ (Sella and
Hirsh 2005).

Predicting dN/dS from Scaled Selection Coefficients

We now derive respective expressions for average nonsynon-
ymous and synonymous evolutionary rates, which we can
divide to obtain the evolutionary rate ratio dN/dS. We write
the mean nonsynonymous rate KN as

KN ¼
X

i

X
j2N i

Piqij; ð6Þ

where N i is the set of codons that are nonsynonymous to
codon i and differ from it by one nucleotide, and the

substitution probability qij is defined in equation (2). To nor-
malize KN, we divide it by the number of nonsynonymous
sites, which we calculate according to the mutational oppor-
tunity definition of a site (Goldman and Yang 1994; Yang
2006) as

LN ¼
X

i

X
j2N i

Pimij : ð7Þ

Thus, we find that

dN ¼
KN

LN
¼

X
i

X
j2N i

Piqij

X
i

X
j2N i

Pimij

: ð8Þ

Similarly, for dS, the mean synonymous evolutionary rate KS

per synonymous site LS, we find

dS ¼
KS

LS
¼

X
i

X
j2Si

Piqij

X
i

X
j2Si

Pimij

; ð9Þ

where Si is the set of codons that are synonymous to codon i
and differ from it by one nucleotide substitution. The quan-
tities KS and LS are defined as in equations (6) and (7) but
sum over j 2 Si instead of j 2 N i.

Moreover, under certain simplifying conditions, we can
simplify the ratio given by equations (8) and (9) to a more
intuitive interpretation. If we assume that all synonymous
codons have equal fitness (i.e. synonymous mutations are
neutral), the synonymous fixation rate satisfies
uij j j2Si

¼ 1=Ne (Crow and Kimura 1970), and hence the syn-
onymous substitution probability becomes qij = mij. If we fur-
ther assume symmetric mutation rates, the value for dS
reduces to 1, and dN/dS thus reduces to the mean nonsynon-
ymous substitution rate. We additionally note that, if we
further assume uniform mutation rates, dN/dS becomes
simply the average nonsynonymous fixation rate.

MutSel Models Specifically Describe Purifying
Selection

We examined the relationship between dN/dS and scaled
selection coefficients by simulating 200 distributions of
amino acid scaled fitness values, Faa

a ¼ 2Nf aa
a , from a

normal distribution Nð0; �2Þ. We drew a unique �2 for
each fitness distribution from a uniform distribution
Uð0; 4Þ. Higher values for �2 correspond to larger fitness dif-
ferences among amino acids, causing selection to act more
strongly against nonsynonymous changes. Thus, high �2

values indicate strong purifying selection, low values indicate
weak purifying selection, and �2 ¼ 0 indicates that all amino
acids are equally fit. We note that these Faa

a quantities corre-
spond exactly to the amino acid propensity parameters esti-
mated by currently available site-specific MutSel inference
methods (Rodrigue and Lartillot 2014; Tamuri et al. 2014).

We then converted each amino acid fitness distribution to
a corresponding set of codon fitnesses, as described in
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Materials and Methods. Briefly, for 100 of the distributions, we
assumed that all synonymous codons had the same fitness,
but for the other 100 distributions we allowed synonymous
codons to have different fitnesses. In other words, the former
100 distributions do not incorporate purifying selection on
synonymous changes whereas the latter 100 distributions do.
Using equations (6)–(9), we computed dN/dS for each distri-
bution of codon fitnesses. For these calculations, we assumed
the symmetric mutation model HKY85 (Hasegawa et al.
1985), which is specified by the parameters �, the nucleotide
mutation rate, and �, the ratio of transitions to transversions.
Specifically, transitions occur at a rate�� and transversions at
a rate �. We used � ¼ 10�6 for all simulations, while we
selected a unique value for � for each simulation from
Uð1; 6Þ.

Under neutral evolution, we expect that dN=dS ¼ 1, and
as purifying selection increases in strength, dN/dS should cor-
respondingly decrease. Therefore, we expect that dN/dS will
decline with the variance (�2) of the distribution of amino
acid fitness values. Indeed, we observed a strong, negative
correlation between these quantities (fig. 1). The larger the
fitness differences among amino acids (higher �2), the lower
dN/dS, properly reflecting increased purifying selection. This
correlation was much stronger for fitness distributions with-
out synonymous selection (fig. 1A) than for those with syn-
onymous selection (fig. 1B). This difference emerged because
fitness differences among synonymous codons obscured un-
derlying amino acid fitness differences. Even so, selection on
synonymous codons did not negate the significant correla-
tion between dN/dS and overall selection strength.

Importantly, figure 1A demonstrates that, in the limiting
case when �2 approaches 0, and thus all codons have virtually
the same fitness, dN/dS converges to 1. In other words, when
the protein-coding sequence evolved neutrally, selection co-
efficients correctly yielded a dN=dS&1. Furthermore, we
never recovered dN=dS 4 1 when synonymous changes
were neutral, revealing a key property of Halpern–Bruno
style MutSel models: They inherently cannot describe posi-
tive, diversifying selection. Indeed, in Appendix A, we prove
that, under the assumptions that synonymous changes are

neutral and mutation is symmetric, scaled selection coeffi-
cients strictly yield dN=dS � 1. This proof formalizes this
MutSel model’s underlying assumption that selection pres-
sure is constant over the phylogeny and that the protein
evolves under equilibrium conditions. Although this proof
assumes symmetric mutation rates, we have found numeri-
cally that dN/dS remains bounded from above by 1 even
when mutations rates are asymmetric (supplementary fig.
S1, Supplementary Material online).

Purifying Selection on Synonymous Changes Can
Produce dN/dS 4 1

The restriction dN=dS � 1 does not hold when synonymous
changes are not neutral, as seen in figure 1B. Even though the
Halpern–Bruno model explicitly assumes that the system is at
equilibrium (Halpern and Bruno 1998; Thorne et al. 2012), we
find that dN/dS can readily be greater than 1 under strong
synonymous selection. In fact, it is theoretically possible to
achieve arbitrarily high dN/dS values when synonymous
codon substitutions carry fitness changes. In the most ex-
treme case of synonymous selection, where only a single
codon per amino acid is selectively tolerated, the number
of synonymous changes becomes KS ¼ 0, and thus the
value for dN/dS approaches infinity. Therefore, we find that
dN=dS 4 1 may indicate either positive, diversifying selec-
tion on amino acids or strong purifying selection on synon-
ymous codons.

Given that the MutSel model framework assumes an over-
arching regime of purifying selection, this finding might seem
paradoxical. However, the logical argument that dN=dS 4 1
represents positive, diversifying selection assumes that the
rate of synonymous change may be used as a neutral bench-
mark, an assumption clearly violated when selection acts on
synonymous changes. Thus, the traditional signal of positive,
diversifying selection, a dN/dS value in excess of one, can
result simply from strong synonymous fitness differences.

That sequences evolving under purifying selection can
spuriously bear the hallmark of positive, diversifying selection
highlights the pitfalls of naively interpreting dN/dS values.
Indeed, evolutionary constraints which induce synonymous

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Variance of selection strength (σ2)

dN
dS

A
No Synonymous Selection

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Variance of selection strength (σ2)

dN
dS

B
Synonymous Selection

FIG. 1. dN/dS decreases in proportion to amino acid level selection strength. dN/dS is plotted against the variance (�2) of the simulated distribution of
amino acid scaled fitness values. Higher variances indicate larger fitness differences among amino acids, whereas the limiting value of �2 ¼ 0 indicates
that all amino acids have the same fitness. (A) Synonymous codons have equal fitness values (r2 ¼ 0:83; P < 2�16). (B) Synonymous codons have
different fitness values (r2 ¼ 0:45; P < 2�16). Note that panel B, but not A, shows dN/dS values greater than 1, in spite of the steady-state evolutionary
process. In each panel, the dashed line indicates the y = 1 line, and the solid line indicates the regression line.
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selection are pervasive and affect virtually all domains of life
(Gu et al. 2010), from viruses (Cuevas et al. 2011; Zhou and
Wilke 2011; Zanini and Neher 2013) to plants (Gu et al. 2012)
to Metazoa (Duret 2002; Chamary et al. 2006; Hershberg and
Petrov 2008; Plotkin and Kudla 2011; Lawrie et al. 2013).
Recent work has shown that synonymous rate variation is
common across myriad proteins, and contributing to evolu-
tionary rate heterogeneity in up to 42% of known protein
families (Dimitrieva and Anisimova 2014). For example,
exonic splicing enhancers (Parmley et al. 2006; Schattner
and Diekhans 2006; Parmley and Hurst 2007), regions con-
tributing to mRNA secondary structure such as translation-
initiation sites (Chamary and Hurst 2005; Schattner and
Diekhans 2006; Gu et al. 2010; Cuevas et al. 2011; Zanini
and Neher 2013), and DNA- and RNA-binding sites
(Parmley et al. 2006) all experience moderate to strong syn-
onymous selection. It has additionally been suggested that up
to 18% of mutational fitness effects in RNA viruses, whose
genomes frequently feature sites with dN=dS 4 1 (Bush
et al. 1999; Suzuki 2006; Bhatt et al. 2011; Meyer and Wilke
2013; Meyer et al. 2013), are caused by selection acting on
synonymous changes (Cuevas et al. 2011). Finally, both selec-
tion against protein misfolding and for translation efficiency
tend to induce synonymous selection in a gene-specific
manner (Williford and Demuth 2012; Agashe et al. 2013),
most notably in highly expressed genes (Drummond and
Wilke 2008; Lawrie et al. 2013). Therefore, while synonymous
selection may not dominate genomes in organisms with rel-
atively small effective population sizes (Chamary et al. 2006;
Plotkin and Kudla 2011), it certainly acts strongly at specific
sites and/or small, local regions. As dN/dS ratios are typically
measured on a persite basis, we expect that some sites with
dN=dS 4 1 are false positives in the detection of positive
selection and instead represent cases of strong purifying se-
lection on synonymous changes. We offer several approaches
to ease this concern in Conclusions.

Relationship between dN/dS and Scaled Selection
Coefficients Provides a Novel Benchmarking Approach

The relationship we have established between dN/dS and
scaled selection coefficients offers a unique opportunity to
assess the robustness of dN/dS-based inference methods. It is
conventional practice in model development to benchmark
models against data simulated according to the model itself.
Although crucial for testing whether a given model has been
correctly implemented, this strategy inherently cannot dis-
cern how the model behaves when data arose from a different
mechanistic process. To overcome this limitation, we applied
a novel benchmarking approach which used the theoretical
relationship among modeling frameworks to assess the accu-
racy and specific utility of those models. Outlined in figure 2A,
this approach entails comparing dN/dS values calculated from
selection coefficients to those inferred by a dN/dS-based
model. Through this approach, we are able to simulate data
which explicitly does not conform to the model used for
inference, but we can still compare inferred parameter

values to their true, simulated values using the relationship
derived in the present work.

Using the selection coefficients and symmetric mutation
rates from the previous two subsections, we simulated align-
ments using standard methods (Yang 2006) according to the
Halpern–Bruno MutSel model (Halpern and Bruno 1998). We
then inferred a dN/dS value for each alignment using the
GY94 matrix (Goldman and Yang 1994; Nielsen and Yang
1998), which estimates dN/dS with the parameter !.
Throughout the remaining text, we refer to dN/dS inferred
using ML as ! or ! MLE, and to dN/dS computed using
equations (6)–(9) simply as dN/dS.

We found that dN/dS values agree nearly perfectly with !
MLEs (fig. 2B), and indeed is relationship was robust to both
synonymous selection and uneven nucleotide composition
(simulated alignments featured GC contents ranging from
0.21 to 0.89). Additionally, figure 2C demonstrates that !
converged to the true dN/dS value as the size of the data
set (i.e., simulated alignment length) increased. These results
unequivocally show that, when nucleotide mutation is sym-
metric, dN/dS-based model-inference methods behave ex-
actly as expected, yielding precisely accurate dN/dS
estimates. This finding has important implications for model-
ing choices; although the MutSel framework might model the
sequence evolution in a way that more mechanistically
matches the evolutionary process, dN/dS-based models may
suffice to model selective forces in phylogenetic data.

Biased dN/dS Estimates under Asymmetric Mutation
Models

We next sought to test the accuracy of dN/dS-based models
using more realistic parameter values. To this end, we deter-
mined codon fitness distributions from 498 unique distribu-
tions of experimentally derived, site-specific amino acid
fitnesses for H3N2 influenza nucleoprotein (NP; Bloom
2014a). We combined each of these fitness distributions
with three sets of experimentally determined mutation
rates, either for NP (Bloom 2014a), yeast (Zhu et al. 2014),
or polio virus (Acevedo et al. 2014), to determine
498� 3 = 1,494 distinct distributions of steady-state codon
frequencies (see Materials and Methods for details).
Although all three mutation matrices were asymmetric,
each featured a differing degree of mutational bias; specifi-
cally, the mean ratios�ij=�ji for NP, yeast, and polio mutation
rates are 1.03, 1.69, and 5.25, respectively. For each resulting
set of stationary codon frequencies, in combination with its
respective set of mutation rates, we calculated dN/dS and
simulated alignments from which we inferred !. Note that
we assumed no selection on synonymous codons for these
calculations.

dN/dS-based model matrices account for nucleotide mu-
tational bias by incorporating either target codon (Goldman
and Yang 1994) or target nucleotide (Muse and Gaut 1994)
frequencies; these frameworks are known, respectively, as
Goldman–Yang (GY)-style and Muse–Gaut (MG)-style
models (Kosakovsky Pond et al. 2010). For example, the in-
stantaneous rate matrix element giving the substitution
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probability from codon AAA to AAG would contain the
target codon frequency PAAG in GY-style models but the
target nucleotide frequency �G in MG-style models.
Moreover, the GY-style models conform explicitly to a gen-
eral-time reversible (GTR) form, whereas MG-style matrices
do not, at first glance, appear to follow the same framework.
However, as we show in Appendix B, it is indeed possible to
write MG-style matrices such that they conform to the GTR
framework. This insight explicitly justifies using a time-revers-
ible Markov process to describe these models, and it addi-
tionally demonstrates that the F1x4 codon frequency
estimator (Muse and Gaut 1994) represents the state fre-
quencies of the MG-style framework.

Previous works have suggested that MG-style and GY-style
models yield different ! estimates (Kosakovsky Pond and
Muse 2005; Yap et al. 2010), so we inferred ! according to
both GY- and MG-style frameworks. For GY-style models, we
used the frequency estimators F61 (Goldman and Yang 1994),
F3x4 (Goldman and Yang 1994), CF3x4 (Kosakovsky Pond
et al. 2010), and F1x4 (Muse and Gaut 1994). For MG-style
models, we considered both a parameterization with four
global nucleotide frequency parameters and a parameteriza-
tion which employed 12 nt frequency parameters to allow for
different frequencies at each codon position. We term the
former framework MG1 and the latter MG3. Note that our
MG1 corresponds to the original MG-style model (Muse and

Gaut 1994), whereas our MG3 corresponds to the so-called
MG94�HKY85 model (Kosakovsky Pond and Muse 2005).

Figure 3 shows the resulting relationships between dN/dS
and ! MLEs for each set of mutation rates (NP, yeast, and
polio), across model frequency parameterizations. Figure 3A
displays the estimator bias, defined as the average difference
between the true dN/dS value and the ! MLEs. Figure 3B
displays the precision in this relationship, measured by the
squared correlation coefficient r2 between dN/dS and !. The
exact bias and r2 values are given in supplementary tables S1
and S2, Supplementary Material online, respectively, and full
regression plots for dN/dS versus ! are shown in supplemen-
tary figure S1, Supplementary Material online.

Two distinct trends emerge from figure 3. First, asymmetry
in the mutational process consistently induced significant
bias in ! estimates. Most often, the model underestimated
! relative to the true dN/dS value. Based on simulations with-
out any selection (dN=dS ¼ 1), Yap et al. (2010) had previ-
ously suggested that GY-style models produce negatively
biased ! estimates. Our results generalize this finding and
show that this bias is pervasive, remains approximately con-
stant through a wide range of dN/dS values, and is not limited
to the GY-style framework (fig. 3A, supplementary table S1
and fig. S1, Supplementary Material online). Furthermore, this
bias systematically increased in magnitude as the underlying
mutational process became more asymmetric. Indeed, for all
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FIG. 2. Combined modeling approach to assess performance of dN/dS inference frameworks. (A) Protein-coding alignments are simulated in the MutSel
modeling framework. dN/dS can then be calculated (“predict”) from scaled selection coefficients as well as through an ML inference framework (“infer”).
Comparing resulting quantities reveals the accuracy of the chosen inference framework. (B) Regression between predicted dN/dS values and inferred !
MLEs. Each point corresponds to a single simulated alignment, and the solid line is the x = y line. (C) Convergence of ! MLEs to the true dN/dS value.
The y axis indicates the relative error of the ! MLE, and the x axis indicates the number of positions in the simulated alignment. As the number of
positions and hence the size of the data set increases, ! converges to the predicted dN/dS value. The solid line is the y = 0 line, indicating no error.
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frequency parameterizations, ! MLEs were most accurate
under NP mutation rates, and both accuracy and precision
tended to decrease as mutational bias progressed from yeast
to polio mutation rates.

Second, frequency parameterizations which more closely
matched the mechanistic process that generated the data
(MG1 and MG3) generally outperformed all other frequency
estimators. In particular, MG1 clearly performed the best of all
frequency estimators considered, featuring by far the least
amount of estimator bias for the highly asymmetric polio
mutation rates. This result makes intuitive sense, as the
MG-style framework most mechanistically matches the
MutSel framework among all dN/dS-based frameworks exam-
ined here. Indeed, in the case of neutral evolution, != 1 in an
MG-style matrix, and the ratio of fixation probabilities in the
MutSel matrix will also equal 1. Therefore, nucleotide muta-
tion rates alone comprise each model’s rate matrix, demon-
strating that MG-style and MutSel models are virtually
identical under neutral evolution. Importantly, this corre-
spondence does not hold for GY-style matrices which, as
they incorporate target codon frequencies, do not explicitly
consider nucleotide mutation rates. Thus, we highly recom-
mend that researchers employ MG-style matrices in their dN/
dS inferences to minimize bias. We note that this modeling
framework is available through HyPhy (Kosakovsky Pond et al.
2005) and/or the Datamonkey server (Delport et al. 2010).

Model with Best Fit Is Not the Model That Yields the
Most Accurate Parameter Estimates

Strikingly, when we examined model fit using Akaike infor-
mation criterion (AIC) scores (Akaike 1974; Burnham and
Anderson 2004) for the different frequency parameteriza-
tions, we found that the F61 parameterization was unequiv-
ocally the best-performing model, on average, for all data sets
(table 1). This result dramatically juxtaposed the substantial
inaccuracy and imprecision in ! that F61 frequently yielded.
In particular, F61 had the most estimator bias for NP data sets
as well as the least precision for both NP and polio data sets
(fig. 3). Thus, we found AIC could not identify the model

which produced the most accurate estimates for the param-
eter of interest.

Although this result may seem counterintuitive, it is im-
portant to note that AIC measures goodness-of-fit by approx-
imating the Kullback–Leibler (KL) distance between a given
candidate model and the true model. As the MutSel frame-
work defines selection coefficients in terms of stationary fre-
quencies, it indeed follows that the F61 estimator, which
explicitly incorporates empirical codon frequencies into the
rate matrix, should be selected as the best-fitting model, in
spite of its biased parameter estimates. Therefore, we addi-
tionally assessed whether Bayesian information criterion (BIC)
might provide a more accurate indication of model perfor-
mance. However, BIC scores yielded the same overarching
trend as did AIC scores in which F61 dramatically outper-
formed all other frequency parameterizations (supplemen-
tary table S3, Supplementary Material online).

This finding has broad implications for practices in model
selection. In particular, it appears that model fit can be con-
founded with model accuracy, such that the model with
better model fit may produce less accurate parameter esti-
mates. We find that, if the data are generated by a process
distinct from the inference model, standard model selection
quantities cannot necessarily identify which model produces
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FIG. 3. Estimator bias and precision of ! estimates for various model frequency parameterizations. (A) Estimator bias and (B) Precision (r2) values
between dN/dS and!MLEs across model frequency parameterizations, for each set of nucleotide mutation rates. To calculate bias, we fit a linear model
with ! as the response and dN/dS as the predictor, with a fixed slope of 1, and the resulting intercept value represents the bias. Negative biases indicate
! MLEs that are, on average, lower than dN/dS. Note that all standard errors for bias are smaller than the symbol size.

Table 1. Mean �AIC for Data Sets Simulated with NP, Yeast, or
Polio Virus Mutation Rates.

Frequencies NP Yeast Polio

F61 0 0 0

CF3x4 �9519.53 �7843.77 �7975.94

MG1 �13207.5 �9924.05 �5147.57

F1x4 �13410.54 �13544.47 �15468.29

MG3 �14287.28 �12737.57 �8624.87

F3x4 �14699.22 �17277.3 �19384.58

NOTE.—The order of frequency models shown in the table corresponds to the
model ranking for NP, and the ranking differs somewhat for yeast and polio data
sets. AIC is computed as AIC ¼ 2ðk� ln LÞ, where k is the number of free param-
eters of the model, and ln L is the log-likelihood (Akaike 1974; Burnham and
Anderson 2004). Number of free parameters for each model is F61, 63; CF3x4, 12;
MG1, 6; F1x4, 6; MG3, 12; and F3x4, 12. Note that, for each model, three of the
parameters are !, �, and a global branch-length scaling parameter, and the remain-
ing parameters are either empirical codon or nucleotide frequencies.
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the most precise and least biased parameter estimates. Good
model fit, therefore, may not have any bearing on whether
using that model is mechanistically justified, and selecting
models based solely on fit may not guard effectively against
spurious inferences but instead prove misleading. We suggest
that the mechanism producing the data should be carefully
considered, and an appropriate inference method which best
approximates this process should then be selected.

Finally, these results provide a concrete example of previ-
ous theoretical suggestions that AIC might fail in phylogenetic
model selection (Liberles et al. 2013). Indeed, previous work
has suggested that Bayes factors might serve as a better indi-
cation of model performance than AIC, albeit results were
obtained in a Bayesian rather than frequentist framework
(Rodrigue et al. 2008). Further investigation into the perfor-
mance of various model fit criteria for model selection is
strongly warranted.

Conclusions
By elucidating the relationship between dN/dS and scaled
selection coefficients, we have shown that dN/dS-based and
MutSel models convey consistent information regarding the
strength of natural selection. Importantly, our proof that dN
=dS � 1 (assuming symmetric mutation and no synonymous
selection) indicates that the use of the Halpern–Bruno
MutSel modeling framework is only justified under purifying
selection. This restriction is in part indicated by this model’s
assumption of constant selection pressures over time, or in
other words a static fitness landscape (Halpern and Bruno
1998; Thorne et al. 2007, 2012; Rodrigue et al. 2010). Thus, if
the aim is to identify positive, diversifying selection, of the two
frameworks examined here, only dN/dS-based models are ap-
propriate. However, different MutSel frameworks not exam-
ined here, which allow fitnesses to fluctuate over time, should
serve as a promising avenue for future research extending the
applicability of this modeling framework (Whelan 2008;
Mustonen and L€assig 2009).

We have also found that dN/dS values can readily be
greater than 1 when selection acts on synonymous muta-
tions, even though the protein sequence is evolving solely
under purifying selection. This seemingly paradoxical finding
actually reflects an assumption violation; the assertion that
dN=dS 4 1 necessarily corresponds to positive, diversifying
selection requires that synonymous changes are neutral,
which clearly does not hold if there are fitness differences
among synonymous codons. This result contributes to a
growing body of literature which has found that purifying
selection can yield dN=dS 4 1 if model assumptions are not
met. For instance, dN/dS can be greater than 1, even under
purifying selection, if sequences contain segregating polymor-
phisms (Rocha et al. 2006; Kryazhimskiy and Plotkin 2008;
Mugal et al. 2014) or when GC-biased gene conversion is
pervasive (Ratnakumar et al. 2010). Thus, it is becoming in-
creasingly clear that the dN=dS ¼ 1 neutral threshold typi-
cally used to distinguish purifying and positive selection is
highly sensitive to violations in model assumptions. We em-
phasize that it is crucial to verify that data adhere to model
assumptions before conclusions from dN/dS are drawn.

We suggest several strategies to limit such false positive
results under synonymous selection. For one, certain formu-
lations of dN/dS-based methods consider dN and dS rate
variation separately (Muse and Gaut 1994; Kosakovsky
Pond and Muse 2005; Mayrose et al. 2007; Murrell et al.
2013) rather than using a single parameter to represent dN/
dS. These kinds of methods, and indeed others which explic-
itly model nucleotide-level selection in conjunction with
codon-level selection (Rubinstein et al. 2011) or correct dS
for synonymous selection (Zhou et al. 2010), may be able to
distinguish situations in which dN=dS 4 1 because dN is
unusually large (positive selection) or dS is unusually small
(purifying selection). Further, our benchmarking approach, in
which we simulate sequences according to MutSel models
and infer dN/dS both from MutSel parameters directly and
using ML, may be used to benchmark these kinds of models
and may help to identify circumstances under which synon-
ymous selection confounds dN/dS interpretations.

Finally, we emphasize the utility of establishing relation-
ships among distinct modeling frameworks to probe model
behavior and evaluate model performance. Such an approach
is uniquely able to reveal unrecognized behaviors and/or lim-
itations of different modeling frameworks and can precisely
reveal the circumstances in which different models are best
suited. We hope that further studies in this spirit will ensure
robust model development in future studies.

Materials and Methods

Simulation of Scaled Selection Coefficients

To examine the relationship between dN/dS and scaled se-
lection coefficients, we simulated 200 distributions of amino
acid scaled fitness values, Faa

a ¼ 2Nf aa
a , from a normal distri-

bution Nð0; �2Þ, where a unique �2 for each fitness distri-
bution was drawn from a uniform distribution Uð0; 4Þ. We
converted these amino acid fitnesses to codon fitnesses as
follows. For 100 of the fitness distributions, we directly as-
signed all codons within a given amino acid family the fitness
Fcodon

i ¼ Faa
a , so that all synonymous codons had the same

fitness. For the other 100 fitness distributions, we assigned
synonymous codons different fitnesses by randomly drawing
a preferred codon for each amino acid. This preferred codon
was assigned the fitness of Fcodon

i ¼ Faa
a þ �, and all nonpre-

ferred codons were given the fitness Fcodon
j ¼ Faa

a � �. We
drew a unique � for each fitness distribution from Uð0; 2Þ.
We then computed stationary codon frequencies as

Pi ¼
eFcodon

iX
k

eFcodon
k

; ð10Þ

where the sum in the denominator runs over all 61 sense
codons (Sella and Hirsh 2005). Equation (10) gives the ana-
lytically precise stationary frequencies for a MutSel model,
under the assumption of symmetric mutation rates (Sella
and Hirsh 2005). We used equations (6)–(9) to compute
dN/dS for each resulting set of stationary codon frequencies.
For these calculations, we assumed the HKY85 (Hasegawa
et al. 1985) nucleotide mutation model, and accordingly we
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set the transition mutation rate as �� and the transversion
rate as �. We used the value � ¼ 10�6 for all dN/dS calcu-
lations, and we drew a unique value for � from Uð1; 6Þ for
each set of codon frequencies.

Alignment Simulations

We simulated protein-coding sequences as a continuous-
time Markov process using standard methods (Yang 2006)
according to the Halpern–Bruno MutSel model (Halpern and
Bruno 1998). In brief, this model’s instantaneous rate matrix
Q ¼ qij is populated by elements

qij ¼

mij
Sij

1� 1=Sij
single nucleotide change

0 multiple nucleotide changes

;

8>>><
>>>:

ð11Þ

for a mutation from codon i to j, where mij is the mutation
rate, and the scaled selection coefficient Sij is defined in equa-
tion (5). All alignments presented here were simulated along a
symmetric four-taxon phylogeny with all branch lengths
equal to 0.01, beginning with a root sequence generated in
proportion to stationary codon frequencies (Yang 2006).
Unless otherwise stated, all simulated alignments contained
500,000 codon positions. A single evolutionary model was
applied to all positions in the simulated sequences.
Although this lack of site-wise heterogeneity is unrealistic
for real sequence evolution, it allowed us to verify our derived
relationship between scaled selection coefficients and dN/dS
with a sufficiently sized data set.

Computation of Stationary Frequencies for
Experimental Data Sets

We used experimentally determined site-specific amino acid
fitness parameters Faa

a for influenza NP, from Bloom (2014a),
in combination with experimental nucleotide mutation rates
for either NP (Bloom 2014a), yeast (Zhu et al. 2014), or polio
virus (Acevedo et al. 2014), to derive realistic distributions of
stationary codon frequencies. We combined each of the 498
site-wise amino acid preference sets reported by Bloom
(2014a) with each of the three mutation-rate matrices to
construct a total of 498� 3 = 1,494 unique experimental evo-
lutionary Markov models, using the approach in Bloom
(2014a, 2014b). The instantaneous rate matrix Q for each
experimental model is populated by elements

qij ¼

maxð1; Fcodon
j =Fcodon

i Þmij single nucleotide change

0 multiple nucleotide changes

8<
:

ð12Þ

for a substitution from codon i to codon j, where Fcodon
i is the

fitness of codon i (Bloom 2014a, 2014b). We calculated Fcodon
i

values by simply assigning a given amino acid’s experimental
fitness Faa

a to each of its constituent codons; thus, all synon-
ymous changes were neutral. We determined the stationary
codon frequencies for each resulting experimental model

from the matrix’s eigenvector corresponding to the eigen-
value 0. Finally, we simulated alignments for each set of sta-
tionary frequencies and corresponding mutation rates
according to the Halpern–Bruno model (eq. [11]).

ML Inference of dN/dS

For the 200 alignments simulated with symmetric mutation
rates, we inferred dN/dS using the M0 model (Yang et al. 2000),
as implemented in the HyPhy batch language (Kosakovsky
Pond et al. 2005). The M0 model uses the GY94 instantaneous
rate matrix, which is populated by elements

qij ¼

Pj synonymous transversion

�Pj synonymous transition

!Pj nonsynonymous transversion

!�Pj nonsynonymous transition

0 multiple nucleotide changes

;

8>>>>>>>><
>>>>>>>>:

ð13Þ

for a substitution from codon i to codon j, where � is the
transition–transversion bias, Pj is the equilibrium frequency of
the target codon j, and ! represents dN/dS (Goldman and
Yang 1994; Nielsen and Yang 1998). The Pi parameters are
intended to represent those codon frequencies which would
exist in absence of selection pressure generated by mutation
alone (Goldman and Yang 1994; Muse and Gaut 1994; Yang
and Nielsen 2000; Yang 2006). Thus, when inferring ! on data
sets which used symmetric mutation rates, we assigned the
value 1/61 to all parameters Pi, as all codons are equally prob-
able under unbiased mutation.

Alternatively, when inferring ! for alignments simulated
with experimental fitness and mutation rates, we used several
different model parameterizations, including GY-style
(Goldman and Yang 1994; target codon frequency) and
MG-style (Muse and Gaut 1994; target nucleotide frequency)
parameterizations. We considered the GY-style parameteriza-
tions F61 (Goldman and Yang 1994), F3x4 (Goldman and
Yang 1994), CF3x4 (Kosakovsky Pond et al. 2010), and F1x4
(Muse and Gaut 1994). We implemented two varieties of
MG-style models; the first, MG1, employs four parameters
for nucleotide frequencies (one per nucleotide; Muse and
Gaut 1994), and the second, MG3, employs 12 nt frequency
parameters, with 4 nt frequency parameters for each of the
three codon positions (Kosakovsky Pond and Muse 2005).
All frequency parameters were estimated from the data.
Note that we used the state frequencies of F1x4 for the
MG1 framework and F3x4 for the MG3 framework. In
addition to frequency parameter, all models included the
parameters � and !.

Availability

All code is freely available from https://github.com/claus
wilke/Omega_MutSel, and sequence simulation code is avail-
able from https://github.com/sjspielman/pyvolve. Simulated
alignments are available from the Data Dryad repository at
http://doi.org/10.5061/dryad.51sq0.
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Appendix A

We prove that dN=dS � 1 when calculated from scaled se-
lection coefficients. We assume that mutation rates are sym-
metric (mij = mji) and that synonymous codons have the
same fitness (synonymous changes are neutral). As described
in the main text, these assumptions yield dS = 1, and hence
we have to show that dN ¼ KN=LN � 1. To this end, we note
that the sums in KN and LN can be reordered such that the
substitution probability from codon i to j is always added to
the substitution probability from codon j to i. We can then
show that the sum of each of these pairs in the expression for
KN is smaller than the corresponding term in LN, and hence
dN=dS � 1.

Without loss of generality, we consider a pair of
nonsynonymous codons i and j whose respective stationary
frequencies Pi and Pj satisfy Pi � Pj and Pi; Pj � 0. As
follows from equations (2) and (5), the sum of the
probability weights of evolving from codon i to j and from
codon j to i is

Nemijuij þ Nemjiuji ¼
2PiPj½log ðPiÞ � log ðPjÞ�

Pi � Pj
: ð14Þ

This quantity represents KN in the dN calculation. To prove
dN � 1, we must show that this quantity is less than or equal
to Pi þ Pj, which represents LN in the dN calculation. To this
end, we introduce the function

Fðx; yÞ ¼ xþ y�
2xy½log ðxÞ � log ðyÞ�

x� y
; ð15Þ

and we will now show that Fðx; yÞ � 0 for x � y and
y � 0. Using l’Hôpital’s rule, it is straightforward to show
that lim j x�y j!0 Fðx; yÞ ¼ 0. Thus, we can define
Fðx; xÞ � 0. For x< y, we show that the first derivative of
equation (15) is negative throughout x 2 ð0; yÞ, which proves
that the function monotonically decreases, and thus
Fðx; yÞ 4 0, in this interval. We calculate the first deriva-
tive as

@Fðx; yÞ

@x
¼
½ðx� 3yÞðx� yÞ � 2y2ðlog x� log yÞ�

ðx� yÞ2
: ð16Þ

We now replace the expression log x� log y by its Taylor
series expansion, yielding

@Fðx; yÞ

@x
¼

½ðx� 3yÞðx� yÞ � 2y2ð
X1
n¼1

1

n
ð1� x=yÞnÞ�

ðx� yÞ2
:

ð17Þ

We note that the first two terms of the Taylor series equal
ðx� 3yÞðx� yÞ, and thus expression (17) simplifies to

@Fðx; yÞ

@x
¼

�2y2
X1
n¼3

1

n
ð1� x

yÞ
n

ðx� yÞ2
; ð18Þ

which is clearly negative. This concludes the proof.

Appendix B

GY-style matrices may be expressed in the framework of the
GTR model, in which the instantaneous matrix Q can be
decomposed into a 61� 61 symmetric substitution rate
matrix and a 61-dimensional vector containing the equilib-
rium codon frequencies. The latter corresponds to the
stationary distribution of the Markov chain. In contrast,
MG-style rate matrices are written in terms of nucleotide
frequencies rather than codon frequencies. Therefore,
whether these models fit into the GTR framework is unclear
a priori. We now describe how the MG-style matrix can be
rewritten in terms of a symmetric matrix and a vector of
equilibrium codon frequencies, thus demonstrating that
these matrices also fit into the GTR framework.

MG-style matrix elements, for a the substitution from
codon i to j, are generally given by

qij ¼

�oitj
�tj

synonymous change

!�oitj
�tj

nonsynonymous change

0 multiple nucleotide changes

;

8>><
>>:

ð19Þ

where ! is the ratio of nonsynonymous to synonymous sub-
stitution rates and the product �oitj

�tj
corresponds to a nu-

cleotide-level mutation rate �oitj
, where oi is the origin

nucleotide in codon i, and tj is the target nucleotide in
codon j. Note that the matrix �oitj

is symmetric in oi and tj.
For a given codon i, the matrix of eq. (19) yields the sta-

tionary frequency Pi ¼ �i1�i2�i3 C, where C ¼ 1� stop and

stop ¼ �T�A�G þ �T�G�A þ �T�A�A (Muse and Gaut
1994). Therefore, we can rewrite the term �oitj

�tj
as

�oitj
PjC=ð�m�nÞ, where m and n are the nucleotides which

do not change in a given instantaneous codon substitution.
This allows us to rewrite the rate instantaneous matrix as

qij ¼

C�oitj

�m�n
Pj synonymous change from itoj

!
C�oitj

�m�n
Pj nonsynonymous change from itoj

0 multiple nucleotide changes

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

for a substitution from codon i to codon j, and this matrix
clearly conforms to the GTR framework.

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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