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Abstract: Structural properties such as solvent accessibility and contact number predict site-specific
sequence variability in many proteins. However, the strength and significance of these structure–
sequence relationships vary widely among different proteins, with absolute correlation strengths rang-
ing from 0 to 0.8. In particular, two recent works have made contradictory observations. Yeh et al.
(Mol. Biol. Evol. 31:135–139, 2014) found that both relative solvent accessibility (RSA) and weighted
contact number (WCN) are good predictors of sitewise evolutionary rate in enzymes, with WCN clearly
out-performing RSA. Shahmoradi et al. (J. Mol. Evol. 79:130–142, 2014) considered these same predic-
tors (as well as others) in viral proteins and found much weaker correlations and no clear advantage
of WCN over RSA. Because these two studies had substantial methodological differences, however, a
direct comparison of their results is not possible. Here, we reanalyze the datasets of the two studies
with one uniform analysis pipeline, and we find that many apparent discrepancies between the two
analyses can be attributed to the extent of sequence divergence in individual alignments. Specifically,
the alignments of the enzyme dataset are much more diverged than those of the virus dataset, and
proteins with higher divergence exhibit, on average, stronger structure–sequence correlations.
However, the highest structure–sequence correlations are observed at intermediate divergence levels,
where both highly conserved and highly variable sites are present in the same alignment.

Keywords: protein evolution; protein design; relative solvent accessibility; site variability; packing
density

Introduction
Proteins are subject to a number of biophysical and
functional constraints that influence their evolution-

ary trajectories.1–4 These constraints contribute to
observed patterns in both whole-gene evolutionary

rate variation5–9 and evolutionary rate variation
among sites within individual proteins.10–14 Such
evolutionary rate variation in turn contributes to

heterogeneity in site-specific sequence variability.
A number of studies have sought to understand

the roles that biophysical constraints, particularly
structural constraints, play in this observed site-

specific variability within proteins. Structural
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properties such as solvent exposure and packing
density have emerged as strong predictors of site-
wise evolutionary rates.11,13,15,16 Solvent exposure is
typically measured with the metric relative solvent
accessibility (RSA), which indicates the extent to
which a given residue comes into contact with sol-
vent (i.e., water).17 Residues that are exposed on the
surface of the protein have high RSA, with complete
exposure indicated with an RSA of one. Residues
that are buried and/or in the protein core have low
RSA, with completely buried residues having an
RSA of zero. RSA has a significant, positive relation-
ship with evolutionary rate, such that more buried
residues tend to evolve more slowly than exposed
residues do.10,16,18–23

Alternatively, packing density indicates how
tightly packed a given residue is by neighboring
amino acids in a protein’s tertiary structure. A resi-
due’s packing density is commonly measured as
weighted contact number (WCN), which is defined
as the sum of the inverse square distance of all resi-
dues in the protein to the focal amino acid.24,25

Recent work has suggested that WCN is a strong
determinant of site-specific variability in proteins,
and that residues with high WCN evolve more
slowly than do residues with low WCN.8,11,12,15

However, some studies have yielded apparently
contradictory results regarding the extent of the pre-
dictive power that these structural properties have
on sitewise evolutionary rate (ER). For example, Yeh
et al.11 investigated structure–sequence relation-
ships in a dataset of 216 monomeric enzymes, find-
ing that WCN is a stronger determinant of sitewise
ER than RSA, although RSA was still a significant
predictor. Importantly, Yeh et al.11 recovered strong
correlations between structure and ER, with WCN
and RSA explaining up to !41% of the variance in
site-specific ER. By contrast, Shahmoradi et al.13

examined the structure–sequence relationship on a
set of 9 viral proteins. While Shahmoradi et al.13

similarly found that both RSA and WCN are signifi-
cant predictors of rate in proteins, the correlations
Shahmoradi et al.13 observed were much smaller in
magnitude.13 Specifically, they found that at best,
structural predictors could explain only !15% of the
variance in ER. Given these disparate findings, it
remains unclear which of the two studies is the
more representative one.

Although both Yeh et al.11 and Shahmoradi
et al.13 examined the relationship between sequence
and structural properties, they used different meth-
ods and datasets. First, Yeh et al.11 measured ER
using the method Rate4Site,26,27 whereas Shahmor-
adi et al.13 focused on sequence entropy, which is not
a rate. Second, Yeh et al.11 used a much more com-
prehensive dataset of monomeric enzymes, and
Shahmoradi et al.13 analyzed a comparatively
smaller set of viral proteins, which are subject to an

additional layer of selective forces imposed by the
host immune system. Finally, Shahmoradi et al.13

considered additional structural predictors, namely
protein design and flexibility, while Yeh et al.11

focused on RSA and WCN alone. This use of differ-
ent methods makes it difficult to directly compare
results from the two studies.

Here, we attempt to reconcile these two studies,
by reanalyzing both the enzyme dataset from Yeh
et al.11 and the virus dataset from Shahmoradi
et al.13 in one consistent analysis pipeline. We focus
on three structural predictors from the two studies:
WCN, RSA, and variability in designed proteins. We
confirm that, indeed, correlations between rate and
structural predictors are much smaller for the viral
proteins compared to the enzymes. However, differ-
ences in structural characteristics do not appear to
drive the low predictive power in the viral protein
dataset. Instead, we find that the enzyme and viral
protein datasets primarily differ in the extent of
sequence variability in the multiple-sequence align-
ments (MSAs) used to infer evolutionary rates.
Using evolutionary models, we quantify sequence
divergence for all individual MSAs, and we find that
the enzyme dataset displays very high levels of
divergence while the viral protein dataset has expe-
rienced minimal evolutionary divergence. Across
both datasets, we observe that the strongest struc-
ture–sequence correlations are observed at interme-
diate divergence levels. We conclude that the
strength of the structure–structure relationship in
proteins is, in part, determined by the extent of
sequence variability in the datasets analyzed.

Results
We analyzed two distinct datasets. One was a set of
208 diverse enzyme monomers selected from the
prior analysis by Yeh et al.11 The other dataset was
a smaller set of nine viral proteins from Shahmoradi
et al.13 Note that while the viral dataset from Shah-
moradi et al.13 includes some viral enzymes, in the
following we will use the term “enzymes” to refer
specifically to the proteins from the Yeh et al.11

dataset.
Homologous sequences for each protein were

taken from Yeh et al.11 and Shahmoradi et al.13 For
each protein we made a multiple–sequence align-
ment using MAFFT28,29 on amino-acid sequences.
From these alignments we calculated site-specific
evolutionary rates using Rate4Site.26 We measured
solvent accessibility for a given residue by its rela-
tive solvent accessibility (RSA) [Fig. 1(A)]. We meas-
ured packing density in the protein structures using
side chain WCN [Fig. 1(B)]. Previous studies have
used Ca WCN when correlating WCN with
ER.11,13,15 However, a recent study30 has shown that
calculating WCN using the center of mass of the
side chain results in stronger WCN–ER correlations.
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Therefore, here we used side chain WCN through-

out. We also measured the variability in designed

sequences. For each protein in the viral dataset and

for each enzyme less than 200 residues in length we

computationally designed 500 sequences using the

respective structure as a template. From these

sequences we inferred a “design rate” (DR) at each

site, calculated as the expected steady-state evolu-

tionary rate for an alignment with the given amino-

acid frequencies.

Structural predictors of evolutionary rate
To quantify the strength of structure–rate relation-

ships in proteins, we correlated, separately for each

protein, structural properties at individual sites with

site-specific ER. Unless otherwise noted, we used

Spearman’s correlations throughout. The first struc-

tural property that we examined was relative solvent

accessibility (RSA). Prior work has shown that RSA

has a positive relationship with evolutionary

rate.8,10,11,13,15 This positive relationship between sol-

vent accessibility and ER was verified in our analysis

on the two datasets. Within both datasets, residues

that have high RSA evolved faster on average. How-

ever, the strength of the relationship between RSA

and ER varied between the enzyme and viral protein

datasets. The enzymes, on average, had larger RSA–

ER correlations with a mean correlation coefficient of

0.55 compared to 0.18 for viral proteins (t test: P 5
3.324 3 1025) [Fig. 2(A) and Table I].

Figure 1. Description of structural properties. (A) Visualization of solvent accessibility. (B) Visualization of local packing density.

Each colored red particle represents a residue in the protein. In A, the lower red particle represents a surface residue. The red

and white molecules indicate solvent molecules (e.g., water) that are contacting the red amino acid. This residue has a larger

solvent accessibility because there is a larger proportion of the residue surface exposed to solvent. The upper red particle rep-

resents a core residue. This residue is not in contact with any solvent molecules and thus has low solvent accessibility. Relative

solvent accessibility is obtained by normalizing the solvent accessibility of a given residue by the maximum amount of solvent

accessibility for that amino acid. In B, the arrows pointing towards each residue indicate contacts between the red focal residue

and its neighboring residues. The upper red residue represents a residue that has many neighbors (represented by the arrows)

and thus has a high weighted contact number. The lower red residue is a surface amino acid with few neighbors and thus has

a lower weighted contact number.

Figure 2. Distribution of correlation coefficients between structural properties and evolutionary rate (ER). (A) Spearman correla-

tion coefficients between RSA and ER for the two datasets (t test: P 5 3.324 3 1025). (B) Spearman correlation coefficients

between WCN and ER for the two datasets. For all structural properties, on average, viral proteins show weaker correlations

than do enzymes (t test: P 5 2.454 3 1025).
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Next we investigated the relationship between

ER and packing density. For both datasets, residues

with more contacts evolved slower [Fig. 1(B) and

Table I]. This trend was also stronger for enzymes

than for viral proteins, with a mean correlation coef-

ficient of 20.63 for enzymes and 20.21 for viral pro-

teins (t test: P 5 2.454 3 1025).

Protein design as a structural predictor
Using protein design to search sequence space,

Kuhlman and Baker31 found that sequences are

close to optimal for a given structure (i.e., residues

found at a given site are limited for a given struc-

ture). This constraint is especially true for buried

residues. Given this result, Shahmoradi et al.13

attempted to use sitewise variability in designed

proteins as an additional structural predictor of

ER.13 Likewise, here, we used protein design as a

third predictor of ER. However, unlike in Shahmor-

adi et al.,13 we did not use design entropy at sites

but instead calculated a “design rate” (DR) as our

predictor. We calculated this rate by calculating a

predicted nonsynonymous substitution rate (dN)

from amino acid frequencies at each site, as derived

in Spielman and Wilke.32 We found that this pre-

dicted rate makes similar predictions as does design

entropy (not shown). We used design rate here

because it is the more principled quantity to com-

pare to ER. For computational feasibility, for the

enzyme dataset we only designed proteins that were

less than or equal to 200 residues in length. This

encompassed 32 enzymes. We designed proteins for

all the structures in the viral protein dataset. Before

performing our analysis, we compared the distribu-

tions of the strength of structure–rate correlations

from the full enzyme dataset with that of the distri-

butions obtained from the 32 proteins. The differen-

ces between mean of the distributions were not

significant (t test: P 5 0.419 for RSA, P 5 0.947 for

WCN, Supporting Information Fig. S1).
In viral proteins, DR had a mean correlation

coefficient of approximately 20.02, and in enzymes

the mean coefficient of correlation was approxi-

mately 0.24 (Fig. 3 and Table I). However, for viral

proteins this lower mean correlation was slightly

misleading because some proteins had positive corre-

lations while others had negative correlations, for a

mean near zero (Fig. 3). In both datasets, design

rate was a weaker predictor of evolutionary rates

compared to WCN and RSA.
Even though DR did not correlate that strongly

with ER, it is possible that it could explain variance
in ER not explained by either RSA or WCN. To inves-

tigate this possibility, we used DR at sites as a pre-
dictor in linear models, either individually or in

combination with the two other structural predictors,
and calculated the percent variance explained for

each model. In general, for both enzymes and viral
proteins, design rate was not a good predictor of ER

at sites. However, DR, just like RSA and WCN, was
better at predicting ER in enzymes than in viral pro-

teins. For a model with design rate as a single predic-
tor, the average R2 was 0.01 for viral proteins and

!0.07 for enzymes (Supporting Information Figs. S2
and S3). Including DR as an additional predictor

along with RSA and WCN added some additional
predictive power for ER in both datasets. For exam-

ple, the average R2 of a model with RSA and WCN
as predictors for enzymes was approximately 0.37

(Supporting Information Fig. S2). When we added
DR as an additional predictor, the average R2

increased to 0.40 (Supporting Information Fig. S2).
This increase in predictive power was observed in the

viral dataset as well. In summary, although DR was
poor predictor of evolutionary rate at sites, it

Table I. Averages of Spearman Correlation Coefficients Between Structural Properties and Evolutionary Rate (ER)

Dataset hqER-WCNi hqER-RSAi hqER-DRia hqER-WCNia hqER-RSAia

Enzyme 20.626 0.549 0.240 20.625 0.561
Virus 20.207 0.184 20.022 20.207 0.184

The structural properties analyzed are RSA, WCN, and predicted rate of designed proteins (DR). The analysis was per-
formed on two datasets, one comprises 208 enzyme monomers and comprises nine viral proteins. Structure–ER correlations
are higher in absolute magnitude in enzymes.
a Correlation coefficients calculated using the 32 enzymes and nine viral proteins for which there were designed sequences.

Figure 3. Correlation coefficients of design rate and evolu-

tionary rate (ER). Distributions of Spearman’s correlation

coefficients between design rate (DR) and evolutionary rate

(ER) for the two datasets. Enzyme proteins have higher corre-

lations on average (t test: P 5 7.50 3 1024).
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provided a small improvement in model performance,

in particular for the enzyme dataset.

Effect of divergence of structure–rate
relationships
We found WCN, RSA, and DR all to be poor predic-

tors of ER in viral proteins. There could be at least

two different explanations for this finding. First,

there could be unique structural features found

within the viral protein dataset that are not in the

enzymes as indicated in Tokuriki et al.33 Second, the

viral proteins from Shahmoradi et al.13 may have

experienced unique selection pressures (such as

immune escape) or different divergence times than

the enzymes taken from Yeh et al.11

We found it unlikely that biophysical differences

drove observed differences in the structure–rate cor-

relations between the two datasets. First, any differ-

ences between the distributions for the mean WCN

of the proteins within the datasets were not signifi-

cant (P 5 0.437 for WCN, Fig. 4). Differences in the

mean RSA of the proteins were significant but the

means were extremely similar (t test: P 5 0.027 for

RSA, Fig. 4). Second, the strength of structure–rate

correlations was only weakly dependent on the

mean WCN or mean RSA of a protein (Supporting

Information Figs. S4 and S5). Proteins with larger

mean RSA had only slightly larger RSA–ER correla-

tions on average and the mean WCN was not related

to the magnitude of structure–rate correlations

(Supporting Information Figs. S4 and S5).
We next investigated the possibility that differ-

ences in the multiple-sequence alignments for the

two datasets were driving the differences in predic-

tive power of RSA, WCN, and DR. On average the

enzymes have more sequences in their representa-

tive alignments. We examined whether this differ-

ence was causing the difference in structure–rate

Figure 4. Distribution of average structural properties for each protein in the two datasets. (A) Distribution of average RSA. The

distribution of average RSA different are very similar for both datasets (t test: P 5 0.027). (B) Distribution of average WCN. The

distribution of average WCN is the same for both datasets (t test: P 5 0.437).

Figure 5. Divergence of sequences within the datasets. (A) Distributions of mean patristic distances for sequences in each protein

alignment. Enzymes have larger mean patristic distances (t test: P< 2.2 3 10216). (B) Distributions of mean root-to-tip distances for

sequences in each protein alignment. Enzymes have larger mean root-to-tip distances (t test: P< 2.2 3 10216). For both measures of

divergence, the proteins within the enzyme dataset are more diverged. Divergence is relatively low between the viral proteins.

Jackson et al. PROTEIN SCIENCE VOL 25:1341—1353 1345



correlation strength. We did observe a relationship
between the number of sequences and the structure–
rate strength. However, the strength of this relation-
ship was modest for enzymes (q 5 20.185, P 5
7.403 3 1023 for WCN–ER, and q 5 0.060, P 5 0.390
for RSA–ER) and was nonsignificant for viral pro-
teins (q 5 20.433, P 5 0.250 for WCN–ER and q 5
0.633, P 5 0.076 for RSA–ER).

The two datasets showed significantly different
levels of evolutionary divergence (Fig. 5). We calcu-
lated the divergence for each dataset using two

quantities: mean root-to-tip distance and mean
patristic distance. Root-to-tip distance represents
the extent of evolutionary divergence from the data-
set’s common ancestor to a given sequence. The
mean root-to-tip distance for each dataset was calcu-
lated as the average branch length, which indicates
the number of substitutions, from the root in the
tree to each terminal edge (tip) in the tree. Patristic,
or pairwise, distance is the sum of branch lengths
between two tips in a tree, and indicates how dis-
tantly related two sequences are to one another. As

Figure 6. Comparison of the mean of entropy and the variance of entropy for individual proteins. (A) Variance in entropy at

sites compared against overall mean entropy for each protein. Five different enzymes are highlighted, spanning the range of dif-

ferent combinations of high and low mean entropy and entropy variance. The enzymes are colored in black and the virus pro-

teins are colored red. (B–F) Distributions of sitewise entropy values for the five proteins highlighted in (A). There are a variety of

distributions in site entropy for different proteins. Note: The protein denoted by the PDB ID 3GOL is a viral protein.
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with mean root-to-tip-distance, a higher mean

patristic distance indicated more evolutionary diver-

gence. The enzyme alignments were much more

diverged than the viral protein alignments (t test:

P < 2.20 3 10216 for mean root-to-tip distance and

P < 2.20 3 10216 for mean patristic distance).
Supporting Information Figure S6 shows struc-

ture–rate correlation strengths as a function of

divergence (here measured as mean patristic dis-

tance). For both RSA–ER and WCN–ER correlations,

proteins with MSAs that had higher levels of diver-

gence tended to have higher structure–rate correla-

tions in magnitude. However, the trend between

RSA–ER and WCN–ER correlations and mean

patristic distance was not very strong (q 5 0.161, P

5 0.017 for RSA–ER and q 5 20.117, P 5 0.086 for

WCN–ER).
Because divergence correlated only weakly with

the structure–rate correlations, we hypothesized

that overall divergence in an alignment mattered

less than did variability in divergence among sites

in an alignment. To obtain strong correlations with

structural quantities, we need both highly conserved

and highly variable sites. To assess the variability in

the alignment at each site, we next calculated Shan-

non entropies at each site. By plotting the variance

in entropy among sites against the mean [Fig. 6(A)],

we found that indeed some alignments had overall

high divergence but low variability among sites

while other alignments were less diverged on aver-

age but had higher variability among sites. Figure

6(B–F) shows specific examples of entropy distribu-

tions among sites for individual proteins. For exam-

ple, consider the protein identified by PDB ID 1G24

[Fig. 6(B)]. This protein had high mean entropy

while maintaining a relatively low variance of

entropy. Thus, sites in this protein were uniformly

highly variable. Note that the distributions of

entropy varied greatly between proteins even when

they were from the same dataset [Fig. 6(B–F)].
We next plotted structure–rate correlations

against the variance in entropy and found strong

correlations (Fig. 7, Spearman’s correlation test: q 5
20.321, P 5 1.526 3 1026 for WCN–ER, q 5 0.236,

P 5 4.746 3 1024 for RSA–ER). Proteins that had

more variance in entropy across sites had larger

structure–rate correlations in magnitude. Overall,

enzymes were more diverged which in turn resulted,

on average, in larger variances in entropy across

proteins. The viral proteins were less diverged and

as such had lower variances in site variability. How-

ever, even for the highly diverged enzymes, correla-

tions with structural quantities were low unless the

alignments showed high variation in site variability.

Thus, structure–rate correlations are maximized at

intermediate levels of divergence, where alignments

are sufficiently diverged for a high dynamic range

(both highly conserved and highly variable sites are

present in the same alignment) but not overly satu-

rated with divergence (so that all sites are highly

diverged).
We also investigated the effect of alignment

quality on the observed patterns. Highly diverged

sequences are more difficult to align, and errors in

multiple sequence alignments may propagate to

yield spurious rate inferences at some sites. Such

inferences may be partially responsible for the low

structure–rate correlations for some proteins. To

Figure 7. Comparison of structure–rate correlations with variance of entropy at sites. (A) Comparison of Spearman’s correlation

coefficients of WCN–ER and variance of entropy for proteins. (Spearman’s correlation test: q 5 20.321, P 5 1.526 3 1026

using only the original protein datasets), (B) correlations of RSA–ER and variance of entropy for proteins (q 5 0.236,

P 5 4.756 3 1024 using only the original protein datasets). Enzymes are black, the viral proteins with the original alignments

are in red, and the viral proteins with the newly collected sequences are in turquoise. Enzymes have more variance in entropy

across proteins and have larger structure–rate correlations in magnitude for both RSA and WCN. Virus proteins represented by

the newly curated, more diverged alignments (see “Methods”) have similar structure–rate correlations to the original viral protein

dataset.
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assess average alignment reliability, we calculated a
reliability score using guidance34,35 for each multiple
sequence alignment. For each alignment, we calcu-
lated a column score (CS) at each site. CS scores
range from 0, indicating an unreliably-aligned site,
to 1, indicating a highly reliable alignment. We aver-
aged the guidance CS for each multiple sequence
alignment to obtain a mean guidance score repre-
senting the overall quality of an alignment. All of
the viral proteins had scores greater than 0.98, indi-
cating that these alignments had low uncertainty.
The enzyme proteins had scores that span a very
wide spectrum of quality, from 0 to 1. However, in
enzymes, we found that the strength of structure–
rate correlations was not correlated with alignment
quality (Supporting Information Fig. S7, Spearman’s
correlation test: q 5 20.022, P 5 0.746 for WCN–
ER, q 5 20.132, P 5 0.057 for RSA–ER). This find-
ing suggests that alignment quality is not a signifi-
cant factor in the observed strength of structure–
rate correlations.

As a final test of the effect of divergence on
structure–rate correlations, we obtained a series of
more diverged viral alignments. Briefly, we used
PSI–BLAST to obtain a set of homologous proteins
for each of the viral proteins from Shahmoradi
et al., using the UniProt90 database. This procedure
was comparable to the procedure that had been used
to assemble the enzyme alignments. Subsequently,
we performed the same analysis using these align-
ments as we did on the other two datasets. Using
this new methodology, we only managed to collect
sufficient sequences to calculate meaningful evolu-
tionary rates for three of the viral proteins (PDB
IDs: 1RD8, 3GOL, and 3LYF). However, even though
the dataset was small, we could compare it to the
other two datasets for consistency. We found that
the new viral dataset was more diverged than the
original viral dataset but still less diverged than the
enzyme dataset (Supporting Information Fig. S6).
Despite this increased divergence in the new viral
dataset, the strength of WCN–ER and RSA–ER cor-
relations were similar to the original viral dataset.
Additionally, the relationship between measures of
divergence and the strength of structure–rate corre-
lations was similar for both viral datasets (Fig. 7,
Supporting Information Fig. S6). Even with the new
approach it was difficult to obtain viral alignments
with high divergence, which may be responsible for
the lower structure–rate correlations still observed.

Discussion
The field of molecular evolution has a long history of
attempting to identify the factors that affect the rate
at which proteins evolve. At the level of whole-
protein rates, some of the factors identified include
expression level, interactions with other protein
partners,5,36–38 and selection for the costs of misfold-

ing.39 Recently, the emphasis has shifted towards
explaining rate variation among sites within pro-
teins, which seems to be driven primarily by bio-
physical, structural constraints.10–15,22,40

Among the structural constraints, packing den-
sity and relative solvent accessibility have emerged
as the two best structural predictors of evolutionary
rate.10,11,13,15,20 Sites that are on the surface of the
protein tend to evolve faster than sites in the pro-
tein interior. Similarly, sites that are densely packed
and have more contacts tend to evolve slower and
exhibit less sequence variability than sites with
fewer contacts. However, how strongly these two
structural quantities (solvent accessibility and local
packing density) correlate with evolutionary rate at
sites remains somewhat unclear.

Here we have examined the relationship
between site variability and the strength of struc-
ture–rate relationships by performing a direct com-
parison of the enzyme dataset from Yeh et al.11 and
the viral proteins from Shahmoradi et al.13 We have
found that both WCN and RSA are significant pre-
dictors of ER in enzymes, with 37% of the variation
in ER explained (on average) by WCN and 28%
explained on average by RSA. In viral proteins, both
quantities perform weaker, explaining on average 8
and 7% of variation in ER, respectively. Therefore,
when analyzed using the same methods the datasets
of Yeh et al.11 and Shahmoradi et al.13 both show
that WCN performs better than RSA.

In addition to RSA and WCN, we have also con-
sidered a third predictor, protein design rate (DR).
Protein design had previously been used in Shah-
moradi et al.13. We have found that protein design
rate is a much poorer predictor of rates at sites than
RSA and WCN are. This result could represent a
limitation in current methods of sequence space
sampling techniques, limitations in the scoring func-
tion used in this study, or it could be that protein
design rate does not capture biophysical forces that
are predictive of evolutionary rates. For example,
Ollikainen and Kortemme41 published a study that
examined the ability of protein design to capture
naturally occurring covariation of amino acids at
sites. Although flexible-backbone design was able to
recapitulate some covariation from natural sequen-
ces, not all covariation could be explained by design,
indicating that other forces besides structure could
be involved in natural patterns of sequence covaria-
tion. Additionally, Jackson et al.42 found that protein
design did not recapture some important structure–
sequence patterns observed in yeast proteins. Nota-
bly, in that study, designed proteins did not exhibit
the same relationship between solvent accessibility
and site variability observed in natural proteins and
hydrophobic residues were often underrepresented
in the protein core. These studies underscore the
possibility that either current protein design
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methods are imperfect at mimicking natural struc-
tural constraints or that structural constraints do
not capture all of the biophysical effects on sequence
evolution.

In contrast to the rate predictors in the enzyme
dataset, for the viral dataset, the structural predic-
tors (RSA, WCN, or DR) all performed poorly. We
have found that neither differences in structural fea-
tures (WCN, RSA, or DR) nor differences in evolu-
tionary rates are likely a driving factor in the
difference in correlation strength. Therefore, we
have investigated the possibility that there are fun-
damental differences in the two datasets themselves.

We have found that the lack of divergence
within the viral proteins of the dataset taken from
Shahmoradi et al.13 is primarily responsible for the
observed low structure–rate correlations. For a pro-
tein to have a high structure–rate correlation, there
needs to be a high level of variability in divergence
among the sites in the multiple–sequence alignment.
In other words, a protein must have a combination
of sites that are highly conserved and sites that are
highly variable. If all sites in a protein are con-
served or all sites are saturated with many substitu-
tions, so that there is no variability within the
multiple–sequence alignment, then structure–rate
correlations will be low. This combination of highly
conserved and highly variable sites will only occur
when there is an intermediate level of divergence.
This is also why absolute divergence has a much
weaker relationship with the strength of structure–
rate correlations as compared to variance of entropy.
Although it is critical for a dataset to have sufficient
divergence, it is only a necessary and not a sufficient
requirement for strong structure–rate correlations.
The enzyme dataset of Yeh et al.11 has a variety of
proteins with differing levels of divergence and, on
average, has MSAs that are more diverged. The
intermediate level of divergence in these enzymes
results in larger structure–rate correlations.

In addition, variation in selection at sites within
a protein can affect the strength of observed struc-
ture–rate correlations. Across a protein, structure
may differentially affect site variability and hence
the strength of structure–rate correlation strength
varies. Selection against misfolding can constrain
residues within the protein core while selection for
key protein–protein interactions43,44 and/or against
nonspecific protein–protein interactions45 may
impact the variability seen on the protein surface.
For example, important binding sites on the surface
of the protein might be constrained decreasing the
overall variability in variance of site variability. This
would result in lower observed structure–rate
correlations.

Although proteins as a whole exhibit common
selective pressures, depending on the type of protein
there might be additional factors that affect rate.

Both viral proteins and enzymes exhibit some of the

same selective pressures such as selection for stabil-

ity and pressure to fold and adopt the correct native

conformation. Enzymes are used to catalyze chemi-

cal reactions and as such have additional constraints

such as structural constraints for a proper active

site for catalytic function. On the other hand,

viruses use their proteins to infect and replicate

within their hosts. These proteins are utilized to

perform a variety of necessary functions for viral

replication such as host cellular entry46,47 and

nuclear importation.48 As host immune systems

attack these viruses, they evolve to escape from

these host mechanisms resulting in signatures of

positive selection within these proteins. Because of

the differences in selective pressures facing these

two protein types there might be different structural

constraints on sequence variability and evolutionary

rate.
We would like to emphasize that even though

the distributions of average WCN and average RSA

among proteins are similar for both datasets, there

could be other structural differences among the pro-

teins in the two datasets that might affect struc-

ture–rate correlations. Our purpose here was not to

provide a rigorous, detailed analysis of structural

differences among the two datasets. We only exam-

ined two obvious structural features (i.e., average

packing of residues and average residue solvent

accessibility) and showed that they are likely not

the cause for the major discrepancy in correlation

strengths among the two datasets. More sophisti-

cated structural analyses may identify unique struc-

tural features among viral proteins,33 and future

research will have to determine whether these fea-

tures have a measurable impact on structure–rate

relationships. Furthermore, our results only apply to

the two datasets discussed. Any additional general

conclusions about the impact of divergence on

observed structure–rate correlations in other sys-

tems would need further study.

Materials and Methods

Structures, sequences, and measures of
sequence properties
The results presented in this work were based on

two datasets. The first was a dataset of 208 mono-

meric enzymes, taken from Echave et al.14 who rean-

alyzed the structures originally studied by Yeh

et al.11 The Echave et al.14 dataset was slightly

smaller than the original dataset because Echave

et al.14 removed proteins that had missing data at

insertion sites. The dataset from Echave et al.14 was

originally comprised of 209 proteins but we removed

one additional protein, 1CQQ, during our analysis

(see below for details). Thus, our final enzyme data-

set had 208 proteins. In brief, these proteins were
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all enzyme monomers randomly picked from the

Catalytic Site Atlas 2.2.11.49 Proteins in this dataset

varied from 95 to 1287 residues in length. Each

structure was accompanied by a multiple-sequence

alignment of 300 homologous sequences. The second

dataset was taken from Shahmoradi et al.13 and con-

sisted of nine viral proteins. The viral proteins

ranged from 122 to 557 residues in length and each

structure was accompanied by a multiple–sequence

alignment of up to 2362 homologous sequences.

Although both datasets vary in the number of

sequence alignments, we did not enforce a medium

number sequences in the multiple-sequence align-

ments needed to be included in the study since all

alignments had at least 95 sequences.
Sequence alignments for both datasets were con-

structed by aligning the amino-acid sequences using

the alignment software MAFFT,28,29 specifying the

auto flag to select the optimal algorithm for the

given dataset. The alignments were then used to cal-

culate site-specific measures of evolutionary rate for

each individual protein in both datasets. We calcu-

lated a measure of site-specific evolutionary rate for

each protein using the software Rate4Site.26 First,

maximum likelihood phylogenetic trees were

inferred with RAxML, using the LG substitution

matrix and the CAT model of rate heterogeneity.50,51

For each structure, we used the respective sequence

alignment and phylogenetic tree to infer site-specific

substitution rates with Rate4Site, using the empiri-

cal Bayesian method and the JTT model of sequence

evolution.26

Using the alignments, we also calculated the

Shannon entropy Hið Þ, at each alignment column i:

Hi52
X

j

Pijln Pij;

where Pij was the relative frequency of amino acid j

at position i in the alignment. Sequence entropy is a

measure of variability at each site.
Finally, we calculated the divergence of each

multiple-sequence alignment, using two measures:

mean root-to-tip distance and mean patristic dis-

tance. Mean root-to-tip distance counts the average

number of substitutions that have occurred along

the tree. The mean patristic distance of an align-

ment was the average patristic distance of a tree

where patristic distance was defined as the sum of

the branch lengths between two nodes (i.e., sequen-

ces) within the tree.52 Both root-to-tip distance and

patristic distance were calculated using DendroPy.53

For the viral proteins we collected a second

dataset. Using the sequences from the nine viral

proteins from Shahmoradi et al.13 as queries, we

used PSI-BLAST54 against the Uniprot90 to

obtained homologous sequences for each protein. We

used MAFFT and RaxML to create alignments and

build trees for each protein. Trees could not be cre-

ated for three of the proteins because their align-

ments did not have a sufficient number of

sequences. We also chose to discard proteins from

the analysis that did not have at least 25 sequences.

This was done to guard against inaccurate rates. We

calculated evolutionary rates for the remaining

three proteins (PDB IDs: 1RD8, 3GOL, and 3LYF)

using Rate4Site.
We quantified MSA reliability using a re-

implementation of the Guidance platform34 intro-

duced by Spielman et al.35 Guidance quantifies how

robust MSA columns are to the guide tree topology

used in during a progressive alignment algorithm.

For each MSA column, Guidance produces a column

score ranging from 0, indicating that the column is

highly unreliable, to 1, indicating that the column is

highly reliable. Note that the implementation in

Spielman et al.35 differs from that in Penn et al.34

through its use of FastTree55 to construct perturbed

guidetrees. Here, Guidance was run with 100 boot-

strap replicates using the MAFFT28,29 alignment

software, specifying the “auto” flag. We derived an

overall guidance score for each MSA by averaging

its resulting Guidance column scores.

Protein design
Using Rosetta,56 we computationally designed 500

structures for select proteins in each dataset. For

the viral proteins, we designed 500 structures for

each of the proteins taken from Shahmoradi et al.13

For the enzymes, we designed structures for each

protein that was at most 200 residues in length. For

each protein, we first designed 500 flexible ensem-

bles using Backrub.57 Backrub generates a set of

flexible backbone “ensembles” onto which side chains

can then be designed.57,58 The Backub method takes

a temperature parameter, T, that determines the

extent of backbone flexibility during design. Higher

temperatures allow for more backbone flexibility.

Previous work has shown that moderate tempera-

ture parameters result in designed structures more

similar to natural proteins.41,42 Therefore, we used

0.6 as our temperature parameter. We then used the

fixed-backbone method59 to design side chains on

these ensembles.
All designs were generated with Rosetta 3.5,

2014 week five release. To generate the series of

ensembles using flexible-backbone design we used

the following Rosetta commands:

./backrub -database rosetta_database \
-s input.pdb -resfile NATAA.res -ex1 -ex2\
-extrachi_cutoff 0 -backrub:mc_kt 0.6\
-backrub:ntrials 10000 -nstruct 1

-backrub:initial_pack
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For the fixed-backbone design we used the fol-

lowing Rosetta commands:

./fixbb -database rosetta_database \
-s input.pdb -resfile ALLAA.res -ex1 -ex2 \
-extrachi_cutoff 0 -nstruct 1 -overwrite \
-minimize_sidechains -linmem_ig 10

After design, we removed proteins that did not

map back properly to the alignments. This resulted

in the removal of one structure, 1CQQ, completely

from the study. This resulted in a total of 32

enzymes in addition to the viral proteins.
Using the sequence alignments of designed pro-

teins we predicted a sitewise rate, using the expres-

sion for dN proposed by Spielman and Wilke32 (as

implemented in the software Pyvolve60). For this cal-

culation, we assumed that the mutation rate at all

sites was equal. We called this quantity the “design

rate” (DR) at sites.

Calculation of structural properties
In our analysis, we used side chain weighted contact

number (WCN) as proposed by Marcos and

Echave.30 This quantity is defined as

WCNi5
XN

i6¼j

1

r2
ij

;

where rij is the distance between the geometric cen-

ter of the side chain atoms of residue i and the geo-

metric center of the side chain atoms of residue j,

and N is the length of the protein. For glycine resi-

dues the distance to the Ca atom was used in lieu of

the geometric center of the side chain.
To calculate relative solvent accessibility (RSA),

we first calculated the accessible surface area (ASA)

for each site in each protein, via DSSP.61 We then

normalized the ASA values by the theoretical maxi-

mum ASA values found in Table I of Tien et al.17 All

WCN and RSA calculations were done on the indi-

vidual, monomeric protein chain of interest.
All data and analysis scripts required to repro-

duce the work are publicly available to view and

download at https://github.com/wilkelab/rate_vari-

ability_variation.

ACKNOWLEDGMENT
The Texas Advanced Computing Center (TACC) at

The University of Texas at Austin provided high-

performance computing resources.

REFERENCES

1. Liberles DA, Teichmann SA, Bahar I, Bastolla U,
Bloom J, Bornberg-Bauer E, Colwell LJ, de Koning
APJ, Dokholyan NV, Echave J, Elofsson A, Gerloff DL,
Goldstein RA, Grahnen JA, Holder MT, Lakner C,
Lartillot N, Lovell SC, Naylor G, Perica T, Pollock DD,

Pupko T, Regan L, Roger A, Rubinstein N,
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